Выразительные возможности λ -оператора и поссибилистских кванторов в модальных логиках первого порядка

Мухаметшина Индира Искандаровна

Томский государственный университет

Аннотация

В работе сравниваются выразительные возможности двух языков первопорядковой модальной логики: первый содержит λ-оператор и актуалистские кванторы, а второй не содержит λ-оператор, но содержит два вида кванторов (актуалистские и поссибилистские) и предикат равенства. Предложен перевод с первого языка на второй, сохраняющий истинностное значение, и показано, что обратного перевода не существует. Тем самым показано, что второй язык превосходит первый по выразительной силе.

Введение

Для формализации, отражающей прочтение $de\ re$ таких предложений как, например, «Число планет необходимо больше семи», требуется язык, первопорядковой модальной логики, содержащий λ -оператор или два вида кванторов. В постере показано, что с названной проблемой может справиться язык первопорядковой модальной логики с двумя видами кванторов и предикатом равенства и что этот язык превосходит по выразительной силе язык с λ -оператором.

Язык \mathcal{L}_1

Основными характеристиками языка первопорядковой модальной логики \mathcal{L}_1 , описанного у М. Фиттинга и Р.Л. Мендельсона, являются:

- ightharpoonup наличие в языке λ -оператора и предиката =;
- ▶ множество термов определяется индуктивно следующим образом:

$$t ::= x \mid a \mid f(t_1, \dots, t_n),$$

где x – переменная, a – константа, f – n-местный функциональный терм, t – терм.

- отсутствие в атомарных формулах констант и функциональных термов;
- lacktriangle наличие формул вида $\langle \lambda x. \Phi \rangle(t)$, где t терм, x переменная, Φ формула.

Семантика языка \mathcal{L}_1

Модель – это упорядоченная четверка $\langle \mathcal{G}, \mathcal{R}, \mathcal{D}, \mathcal{I} \rangle$, где \mathcal{G} – непустое множество, $\mathcal{R} \subseteq \mathcal{G} \times \mathcal{G}$ и \mathcal{D} – функция от миров к непустым множествам (для любого $\Gamma \in \mathcal{G}$, $\mathcal{D}(\Gamma)$ – домен Γ ; $\bigcup \{\mathcal{D}(\Gamma) : \Gamma \in \mathcal{G}\}$ – домен модели, $\mathcal{D}(\mathcal{M})$) и \mathcal{I} – функция такая что:

- 1. для любого $n \geq 1$, каждым n-местному предикатному символу P и $\Gamma \in \mathcal{G}$, \mathcal{I} назначает некоторое n-местное отношение на $\mathcal{D}(\mathcal{M})$;
- 2. для любых константного символа c и $\Gamma \in \mathcal{G}$, $\mathcal{I}(c,\Gamma) \in \mathcal{D}(\mathcal{M})$;
- 3. для любых $n \geq 1$, n-местного функционального символа f и $\Gamma \in \mathcal{G}$, $\mathcal{I}(f,\Gamma): \mathcal{D}(\mathcal{M})^n \to \mathcal{D}(\mathcal{M});$
- 4. для каждого $\Gamma\in\mathcal{G}$, $\mathcal{I}(=,\Gamma)$ диагональ $\mathcal{D}(\mathcal{M})$.

Означивание переменных в модели и вариант означивания. Пусть $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, \mathcal{D}, \mathcal{I} \rangle$ – модель. Означивание переменных в модели \mathcal{M} – это функция v, назначающая каждой переменной x некоторый элемент v(x) из $\mathcal{D}(\mathcal{M})$. Для любых $\Gamma \in \mathcal{G}$, переменной x и $e \in \mathcal{D}(\Gamma)$, если v_x^e и v согласны относительно всех переменных, кроме, возможно, x и $v_x^e(x) = e$, то $v_x^e - x$ -вариант v.

Денотация терма. Пусть $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, \mathcal{D}, \mathcal{I} \rangle$ – модель, $\Gamma \in \mathcal{G}$ и v – означивание в \mathcal{M} . Для любых $\Gamma \in \mathcal{G}$, терма t, денотат t в Γ обозначается $v\mathcal{I}(t,\Gamma)$ и определяется следующим образом:

- 1. если t переменная, то $v\mathcal{I}(t, \Gamma) = v(t)$;
- 2. если t константный символ, то $v\mathcal{I}(t, \Gamma) = \mathcal{I}(t, \Gamma)$;
- 3. если f-n-местный функциональный символ и t_1,\dots,t_n термы, то

$$v\mathcal{I}(f(t_1,\ldots,t_n),\Gamma)=\mathcal{I}(f,\Gamma)\langle v\mathcal{I}(t_1,\Gamma),\ldots,v\mathcal{I}(t_n,\Gamma)\rangle.$$

Истинность формулы \mathcal{L}_1 в некотором мире модели при некотором означивании переменных (истинность-1). Определим отношение истинности (\models^1) между моделями, мирами, означиваниями переменных и формулами языка \mathcal{L}_1 (укажем только пункты для атомарных формул и формул с λ -оператором; остальные пункты стандартны), так что, если $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, \mathcal{D}, \mathcal{I} \rangle$ – модель, Γ – возможный мир, v – означивание переменных в \mathcal{M} и Φ, Ψ – формулы \mathcal{L}_1 , то:

- ▶ если P является n-местным предикатным символом и $x_1, ..., x_n$ переменные, то $\mathcal{M}, \Gamma \vDash_v^1 P(x_1, ..., x_n) \iff \langle (v)(x_1), ..., (v)(x_n) \rangle \in \mathcal{I}(P, \Gamma);$
- lacktriangled для любого терма t, $\mathcal{M}, \Gamma Dash_v^1 \langle \lambda x. \varPhi \rangle(t) \iff \mathcal{M}, \Gamma Dash_{v_x^{v\mathcal{I}(t,\Gamma)}}^1 \varPhi$.

Язык \mathcal{L}_2

Вокабуляр языка \mathcal{L}_2 отличается от вокабуляра языка \mathcal{L}_1 отсуствием λ -оператора и наличием поссибилистского квантора всеобщности Π . Множество термов \mathcal{L}_2 равно множеству термов \mathcal{L}_1 .

Атомарная формула \mathcal{L}_2 . Если P-n-местный предикатный символ и t_1,\ldots,t_n – термы, то $P(t_1,\ldots,t_n)$ – атомарная формула.

Множество формул \mathcal{L}_2 Множество формул языка \mathcal{L}_2 определяется индуктивно следующим образом:

$$\Phi ::= P(t_1, \dots, t_n) \mid (\neg \Phi) \mid (\Phi_1 \to \Phi_2) \mid (\Box \Phi) \mid (\forall x \Phi) \mid (\Pi x \Phi),$$

где P-n-местный предикатный символ, x – переменная, t_1,\ldots,t_n – термы, Φ – формула. Квантор Σ определяется через Π следующим образом: для любой формулы Φ и переменной x,

$$\sum x \Phi \stackrel{\text{def}}{=} \neg \prod x \neg \Phi.$$

Семантика языка \mathcal{L}_2

Определения модели, означивания, варианта означивания, денотации терма такие же как в описании семантики для языка \mathcal{L}_1 . Семантика \mathcal{L}_2 отличается от семантики \mathcal{L}_1 определением истинности.

Истинность формулы \mathcal{L}_2 в некотором мире модели при некотором означивании переменных (истинность-2) Определим отношение истинности (\models^2) между моделями, мирами, означиваниями переменных и формулами языка \mathcal{L}_2 (укажем только пункты для атомарных формул и формул с Π ; остальные пункты стандартны), так что, если $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, \mathcal{D}, \mathcal{I} \rangle$ – модель, Γ – возможный мир, v – означивание переменных в \mathcal{M} и Φ, Ψ – формулы \mathcal{L}_2 , то:

- Если P является n-местным предикатным символом и t_1, \ldots, t_n термы, то $\mathcal{M}, \Gamma \vDash^2_v P(t_1, \ldots, t_n) \iff \langle v\mathcal{I}(t_1, \Gamma), \ldots, v\mathcal{I}(t_n, \Gamma) \rangle \in \mathcal{I}(P, \Gamma);$
- $\blacktriangleright \mathcal{M}, \Gamma \vDash^2_v \Pi x \Phi \iff \forall e (e \in \mathcal{D}(\mathcal{M}) \Rightarrow \mathcal{M}, \Gamma \vDash^2_{v^e} \Phi).$

Сравнение выразительных возможностей языков \mathcal{L}_1 и \mathcal{L}_2

В этом разделе дано определение перевода с языка \mathcal{L}_1 на язык \mathcal{L}_2 , теорема, показывающая, что перевод сохраняет истинностное значение формул (Теорема 1), и теорема, показывающая, что обратного перевода не существует (Теорема 2).

Нотационная конвенция. Для любой формулы Φ (языка \mathcal{L}_1 или языка \mathcal{L}_2) и любых переменных x,y, Φ^y_x – результат замены всех свободных вхождений переменной x вхождениями переменной y.

Перевод с языка \mathcal{L}_1 на язык \mathcal{L}_2 – это функция от формул языка \mathcal{L}_1 к формулам языка \mathcal{L}_2 , такая что для любых формул Φ, Ψ языка \mathcal{L}_1 :

- 1. если P-n-местный предикатный символ и x_1,\ldots,x_n переменные, то $\mathbb{T}(P(x_1,\ldots,x_n))=P(x_1,\ldots,x_n);$
- 2. $\mathbb{T}(\neg \Phi) = \neg \mathbb{T}(\Phi);$
- 3. $\mathbb{T}(\Phi \to \Psi) = \mathbb{T}(\Phi) \to \mathbb{T}(\Psi)$;
- 4. $\mathbb{T}(\Box \Phi) = \Box \mathbb{T}(\Phi)$;
- 5. $\mathbb{T}(\forall x \Phi) = \forall x \mathbb{T}(\Phi);$
- 6. $\mathbb{T}(\langle \lambda x. \varPhi \rangle(t)) = \Sigma y(y=t \,\&\, \mathbb{T}(\varPhi_x^y))$, где y не имеет вхождений в $\langle \lambda x. \varPhi \rangle(t)$.

Пример. На языке \mathcal{L}_1 прочтение $de\ re$ предложения «Число планет необходимо больше семи» формализуется как $\langle \lambda x. \Box x > 7 \rangle (n)$, где n – число планет. По определению перевода с языка \mathcal{L}_1 получим формализацию прочтения $de\ re$ того же предложения на языке \mathcal{L}_2 : $\Sigma y(y=n\\&\Box y>7)$, где n – число планет.

Теорема. Для любых формулы Φ языка \mathcal{L}_1 , модели $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, \mathcal{D}, \mathcal{I} \rangle$, $\Gamma \in \mathcal{G}$ и означивания переменных v в модели \mathcal{M} ,

$$\mathcal{M}, \Gamma \vDash_v^1 \Phi \iff \mathcal{M}, \Gamma \vDash_v^2 \mathbb{T}(\Phi).$$

Теорема. Существует формула Φ языка \mathcal{L}_2 , которой не эквивалентна ни одна из формул языка \mathcal{L}_1 , т.е. для любой формулы $\Psi \in \mathbb{F}(\mathcal{L}_1)$ существуют модель \mathcal{M} , мир Γ и означивание v, такие что

$$(\mathcal{M}, \Gamma \vDash^2_v \Phi \& \mathcal{M}, \Gamma \nvDash^1_v \Psi) \vee (\mathcal{M}, \Gamma \nvDash^2_v \Phi \& \mathcal{M}, \Gamma \vDash^1_v \Psi).$$

Заключение

Было показано, что язык первопорядковой модальной логики с двумя видами кванторов и предикатом равенства превосходит по выразительной силе язык первопорядковой модальной логики с λ -оператором.

Литература

Fitting M. First-Order Modal Logic. / M. Fitting, R.L. Mendelsohn. – New York: Springer-Science+Business Media, B.Y., 1998. – 287, [13] c.